World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Stand-alone Single-frequency Gps Ice Velocity Observations on Nordenskiöldbreen, Svalbard : Volume 4, Issue 4 (15/12/2010)

By Den Ouden, M. A. G.

Click here to view

Book Id: WPLBN0004022443
Format Type: PDF Article :
File Size: Pages 12
Reproduction Date: 2015

Title: Stand-alone Single-frequency Gps Ice Velocity Observations on Nordenskiöldbreen, Svalbard : Volume 4, Issue 4 (15/12/2010)  
Author: Den Ouden, M. A. G.
Volume: Vol. 4, Issue 4
Language: English
Subject: Science, Cryosphere
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Boot, W., Pohjola, V., W. Van De Wa, R. S., G. Den Oude, M. A., Reijmer, C. H., & Oerlemans, J. (2010). Stand-alone Single-frequency Gps Ice Velocity Observations on Nordenskiöldbreen, Svalbard : Volume 4, Issue 4 (15/12/2010). Retrieved from

Description: Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, The Netherlands. Precise measurements of ice-flow velocities are necessary for a proper understanding of the dynamics of glaciers and their response to climate change. We use stand-alone single-frequency GPS receivers for this purpose. They are designed to operate unattended for 1–3 years, allowing uninterrupted measurements for long periods with hourly temporal resolution. We present the system and illustrate its functioning using data from 9 GPS receivers deployed on Nordenskiöldbreen, Svalbard, for the period 2006–2009. The accuracy of the receivers is 1.62 m based on the standard deviation in the average location of a stationary reference station (NBRef). Both the location of NBRef and the observed flow velocities agree within one standard deviation with DGPS measurements. Periodicity (6, 8, 12, 24 h) in the NBRef data is largely explained by the atmospheric, mainly ionospheric, influence on the GPS signal. A (weighed) running-average on the observed locations significantly reduces the standard deviation and removes high frequency periodicities, but also reduces the temporal resolution. Results show annual average velocities varying between 40 and 55 m yr−1 at stations on the central flow-line. On weekly to monthly time-scales we observe a peak in the flow velocities (from 60 to 90 m yr−1) at the beginning of July related to increased melt-rates. No significant lag is observed between the timing of the maximum speed between different stations. This is likely due to the limited temporal resolution after averaging in combination with the relatively small distance (max. ±13 km) between the stations.

Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard

Bingham, R. G., Hubbard, A. L., Nienow, P. W., and Sharp, M. J.: An investigation into the mechanisms controlling seasonal speedup events at a High Arctic glacier, J. Geophys. Res., 113, F02006, doi:10.1029/2007JF000832, 2008.; Hagen, J. O., Melvold, K., Pinglot, F., and Dowdeswell, J. A.: On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic, Arct. Antarct. Alp. Res., 35(2), 264–270, 2003.; Hagen, J. O., Eiken, T., Kohler, J., and Melvold, K.: Geometry changes on Svalbard glaciers: mass balance or dynamic response?, Ann. Glaciol., 42, 255–261, 2003.; Hinze, H. and Seeber, G.: Ice motion determination by means of satellite positioning systems, Ann. Glaciol., 11, 36–41, 1988.; Iken, A. and Bindschadler, R.A.: Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: Conclusions about drainage system and sliding mechanism, J. Glaciol., 32(110), 101–119, 1986.; IPCC, Climate Change 2007: The Science of Climate Change, in: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., LeRoy Moller Jr., H., and Chen, Z., Cambridge University Press, Cambridge, UK, 2007.; Joughin, I., Das, S. B., King, M. A., Smith, B. E., Howat, I. M., and Moon, T.: Seasonal speedup along the western flank of the Greenland Ice Sheet, Science, 320, 781–783, 2008.; K{ä}{ä}b, A., Lefauconnier, B., and Melvold, K.: Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data, Ann. Glaciol., 42, 7–13, 2005.; King, M.: Rigorous GPS data-processing strategies for glaciological applications, J. Glaciol., 50(171), 601–607, 2004.; King, M., Edwards, S., and Clark, P.: Precise point positioning: Breaking the monopoly of relative GPS processing, Engineering Surveying Showcase, 40–41, 2002.; Mair, D., Willis, I., Fischer, U. H., Hubbard, B., Nienow, P., and Hubbard, A.: Hydrological controls on patterns of surface, internal and basal motion during three spring events: Haut Glacier s'Arolla, Switzerland, J. Glaciol., 49(167), 555–567, 2003.; Meier, M. F., Dyurgerov, M. B., Rick, U. K., O'Neel, S., Pfeffer, W. T., Anderson, R. S., Anderson, S. P., and Glazovsky, A. F.: Glaciers dominate eustatic sea-level rise in the 21st century, Science, 317, 1064–1067, 2007.; Nuttall, A. M. and Hodgkins, R.: Temporal variations in flow velocity at Finsterwalderbreen, a Svalbard surge-type glacier, Ann. Glaciol., 42, 71–76, 2005.; Oerlemans, J., Dyurgerov, M., and van de Wal, R. S. W.: Reconstructing the glacier contribution to sea-level rise back to 1850, The Cryosphere, 1, 59–65, doi:10.5194/tc-1-59-2007, 2007.; Pfeffer, W. T., Harper, J. T., and O'Neel, S.: Kinematic constraints on glacier contributions to 21st-Century sea-level rise, Science, 321, 1340–1343, 2008.; Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical recipes in Fortran 77, second edn., The art of Scientific Computing, Cambridge University Press, Cambridge, UK, 2003.; Rignot, E. and Kanagaratnam, P.: Changes in the velocity structure of the greenland ice sheet, Science, 311, 986–990, 2006.; Rippin, D., Willis, I., and Arnold, N.: Seasonal patterns of velovity and strain across the tongue of the polythermal glacier midre Lovenbreen, Svalbard, Ann. Glaciol., 42, 445–453, 2005.; Shepherd, A., Hubbard, A., Nienow, P., King, M., McMillan, M., and Joughin, I.: Greenland ice sheet motion coupled with daily melting in late summer, Geophys. Res. Lett., 36, L01501, doi:10.1029/2008GL035758, 2009.; Sunil, P. S., Reddy, C. D., Ponraj, M., Dhar, A., and&


Copyright © World Library Foundation. All rights reserved. eBooks from Comic eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.